On the algebra of quasi-shuffles
نویسنده
چکیده
For any commutative algebra R the shuffle product on the tensor module T (R) can be deformed to a new product. It is called the quasi-shuffle algebra, or stuffle algebra, and denoted T q (R). We show that if R is the polynomial algebra, then T q (R) is free for some algebraic structure called Commutative TriDendriform (CTD-algebras). This result is part of a structure theorem for CTD-bialgebras which are associative as coalgebras and whose primitive part is commutative. In other words, there is a good triple of operads (As,CTD,Com) analogous to (Com, As, Lie). In the last part we give a similar interpretation of the quasishuffle algebra in the noncommutative setting.
منابع مشابه
Mixable Shuffles, Quasi-shuffles and Hopf Algebras
The quasi-shuffle product and mixable shuffle product are both generalizations of the shuffle product and have both been studied quite extensively recently. We relate these two generalizations and realize quasi-shuffle product algebras as subalgebras of mixable shuffle product algebras. As an application, we obtain Hopf algebra structures in free Rota-Baxter algebras.
متن کاملQuasi-shuffles, Mixable Shuffles and Hopf Algebras
The quasi-shuffle product and mixable shuffle product are both generalizations of the shuffle product and have both been studied quite extensively recently. We relate these two generalizations and realize quasi-shuffle product algebras as subalgebras of mixable shuffle product algebras. This allows us to extend a previous result of Hopf algebra structure on Baxter algebras.
متن کاملNatural Endomorphisms of Shuffle Algebras
Shuffles have a long history, starting with the probabilistic study of card shufflings in the first part of the 20th century by Borel, Hadamard, Poincaré and others. Their theory was revived in the 50’s, for various reasons. In topology, the combinatorics of (non commutative) shuffle products was the key to the definition of topological products such as the ones existing on cochain algebras and...
متن کاملAdjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been st...
متن کاملCoherent Unit Actions on Regular Operads and Hopf Algebras
J.-L. Loday introduced the concept of coherent unit actions on a regular operad and showed that such actions give Hopf algebra structures on the free algebras. Hopf algebras obtained this way include the Hopf algebras of shuffles, quasi-shuffles and planar rooted trees. We characterize coherent unit actions on binary quadratic regular operads in terms of linear equations of the generators of th...
متن کامل